FUNCTIONAL CIRCUITRY CONTROLLING THE SELECTION OF BEHAVIORAL PRIMITIVES IN CAENORHABDITIS ELEGANS by THEODORE LINDSAY
نویسندگان
چکیده
Original approval signatures are on file with the University of Oregon Graduate School. One central question of neuroscience asks how a neural system can generate the diversity of complex behaviors needed to meet the range of possible demands placed on an organism by an ever changing environment. In many cases, it appears that animals assemble complex behaviors by recombining sets of simpler behaviors known as behavioral primitives. The crawling behavior of the nematode worm Caenorhabditis elegans represents a classic example of such an approach since worms use the simple behaviors of forward and reverse locomotion to assemble more complex behaviors such as search and escape. The relative simplicity and well-described anatomy of the worm nervous system combined with a high degree of genetic tractability make C. elegans an attractive organism with which to study the neural circuits responsible for assembling behavioral primitives into complex behaviors. Unfortunately, difficulty probing the physiological properties of central synapses in C. elegans has left this opportunity largely unfulfilled. In this dissertation we address this challenge by developing techniques that combine whole-cell patch clamp recordings with optical stimulation of neurons. We do this using transgenic worms that express the light-sensitive ion channel Channelrhodopsin-2 (ChR2) in putative pre-synaptic neurons and fluorescent protein reporters in the post-synaptic neurons to be targeted by electrodes. We first apply this new approach to probe C. elegans circuitry in chapter II where we test for connectivity between nociceptive neurons known as ASH required iv for sensing aversive stimuli, and premotor neurons required for generating backward locomotion, known as AVA. In chapter III we extend our analysis of the C. elegans locomotory circuit to the premotor neurons required for generating forward locomotion, known as AVB. We identify inhibitory synaptic connectivity between ASH and AVB and between the two types of premotor neurons, AVA and AVB. Finally, we use our observations to develop a biophysical model of the locomotory circuit in which switching emerges from the attractor dynamics of the network. Primitive selection in C. elegans may thus represent an accessible system to test kinetic theories of decision making. This dissertation includes previously published co-authored material. A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. inhibit early-stage pancreatic pain in a mouse model of pancreatic cancer. quantitative analysis of the sensory and sympathetic innervation of the mouse pancreas. cancer pain and its correlation with changes in tumor vasculature, macrophage …
منابع مشابه
A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans
Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a la...
متن کاملPan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior
Understanding neural functions inevitably involves arguments traversing multiple levels of hierarchy in biological systems. However, finding new components or mechanisms of such systems is extremely time-consuming due to the low efficiency of currently available functional screening techniques. To overcome such obstacles, we utilize pan-neuronal calcium imaging to broadly screen the activity of...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملThe neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans
Neuropeptides have central roles in the regulation of homoeostatic behaviours such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed...
متن کاملOptogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans.
A reliable method for recording evoked synaptic events in identified neurons in Caenorhabditis elegans would greatly accelerate our understanding of its nervous system at the molecular, cellular and network levels. Here we describe a method for recording synaptic currents and potentials from identified neurons in nearly intact worms. Dissection and exposure of postsynaptic neurons is facilitate...
متن کامل